EAC manifolds with structure group G₂

Mahdi Kamandar* and Mohammad Mansori

Faculty member of Khatam-al-anbia air Defense University

Corresponding Author: Mahdi Kamandar

Received: 01 April, 2018 Accepted: 14 April, 2018 Published: 30 April, 2018

ABSTRACT

In this paper we will consider the deformation theory of compact G₂-manifolds, where G = G₂. We will prove that the moduli space of torsion-free G₂-structures is a smooth manifold also proved smoothness of the moduli space on compact G₂-manifolds for any of the Ricci-at holonomy groups G₂ in a fairly uniform way. The arguments used here are geared to make it easier to generalise to the asymptotically cylindrical case in physics.

Keywords: EAC manifolds, G₂-manifolds, cylindrical.

©2018 GJSR Journal All rights reserved.

INTRODUCTION

A way to obtain irreducible compact G₂-manifolds is by gluing a pair of noncompact G₂-manifolds which are asymptotically cylindrical. A manifold is said to have cylindrical ends if it is homeomorphic to a cylinder outside a compact piece. An asymptotically cylindrical manifold is a Riemannian manifold with cylindrical ends for which the metric is asymptotic to a product metric on the cylindrical ends. Asymptotically cylindrical manifolds are easier to work with than arbitrary non-compact manifolds. Many analysis results for elliptic operators on compact manifolds can be generalised to statements about asymptotically translation-invariant elliptic operators acting on suitable spaces of sections on an asymptotically cylindrical manifold. In some arguments it is helpful to impose a stronger condition, requiring the manifold to be exponentially asymptotically cylindrical (EAC). Given a pair of EAC G₂-manifolds whose cylinders match one can form a generalised connected sum by truncating the cylinders after some large but finite length and gluing them together. If the neck length is sufficiently large then the EAC G₂-structures can be glued to form a torsion-free G₂-structure on the connected sum. This is a gluing construction for compact G₂-manifolds. Kovalev proves an EAC version of the Calabi conjecture to produce EAC Calabi-Yau 3-folds. By multiplying with circles reducible EAC G₂-manifolds are obtained, which can be glued to form irreducible compact G₂-manifolds different topological types from those constructed by Joyce.

Definition 1.1. Let X₀ be a compact manifold, and denote by t the R-coordinate on the cylinder X × R. Let M be a Riemannian manifold with HOL(M) ⊆ H and ρ a representation of H. The Lichnerowicz Laplacian on Eₚ is the formally self-adjoint operator

\[\Delta_p = \nabla^* \nabla - 2 (D_p)^2 (R) : \mathcal{I}(E_p) \rightarrow \mathcal{I}(E_p) \]

where \(\nabla \) is the connection on Eₚ induced by the Levi-Civita connection on M.

The 43rd Annual Iranian Mathematics Conference, University of Tabriz
27 - 30 August 2012, Tabriz, Iran

Definition 1.2. A G₂-structure on X × R is cylindrical if it is translation-invariant and the associated metric is a product metric \(g_p = g_0 + dt^2 \)

Definition 1.3. A manifold M is said to have cylindrical ends if it is a union of two pieces \(M_0 \) and \(M_∞ \) with common boundary X, where \(M_0 \) is compact, and \(M_∞ \) is identified with \(X \times \mathbb{R}^* \) by a diffeomorphism (identifying \(\partial M_∞ \) with \(X \times \{0\} \) X is called the cross-section of M.
Definition 1.4. A tensor field or differential operator on $X \times \mathbb{R}$ is called translation invariant if it is invariant under the obvious \mathbb{R}-action on $X \times \mathbb{R}$.

Definition 1.5. An asymptotically cylindrical manifold is a Riemannian manifold with cylindrical ends for which the metric is asymptotic to a product metric on the cylindrical ends.

Definition 1.6. A metric g on a manifold M with cylindrical ends is said to be EAC if it is exponentially asymptotic to a product $g_\infty + dt^2$ metric on $X \times \mathbb{R}$. An EAC manifold is a manifold with cylindrical ends equipped with an EAC metric.

Proposition 1.7. Let M be an EAC G_2-manifold with cross-section X. Then

$$H^2_b(X) = A^2_b \oplus E^2_b, H^6_b(X) = A^6_b \oplus E^6_b$$

and the sums are orthogonal. Furthermore

(i) $H^2_b(X) \to H^6_b(X), [\alpha] \to [\alpha]$ maps A^2_b to E^6_b and E^2_b to A^6_b.

(ii) $H^4_b(X) \to H^6_b(X), [\alpha] \to [\alpha] \cup [\mathcal{Q}]$ maps A^4 to A^6_b and E^4 to E^6_b.

(iii) $H^2(X) \to H^6_b(X), [\alpha] \to [\alpha] \cup \left[\frac{1}{w^2} \right]$ maps A^1 to A^2 and E^1 to E^2.

Proof: (i) is obvious, since \ast maps $A^m \mapsto E^{6-m}$.

$[\alpha] \to [\alpha] \cup [\mathcal{Q}]$ is a bijection $H^4_b(X) \to H^6_b(X)$. It maps A^1 into A^4 and E^1 into E^4. It follows that $A^4 \to A^6_b$ and $E^4 \to E^6_b$ are both surjective and that $H^6_b(X)$ splits as $A^6_b \oplus E^6_b$. $H^2_b(X)$ splits too by (i).

(iii) easily follows from (i) and (ii) in the same way.

Lemma 1.8. Let M be a Ricci-at EAC manifold:

(i) If M has a finite normal cover homeomorphic to a cylinder then M or a double cover of M is homeomorphic to a cylinder.

(ii) If $\pi_1(M)$ is infinite then M has a finite cover \tilde{M} with $b^1(\tilde{M}) > 0$.

Proof: (i) If \tilde{M} is a finite normal cover of a manifold homoeomorphic to a cylinder then it is isometric to a product cylinder $Y \times \mathbb{R}$. M is a quotient of $Y \times \mathbb{R}$ by a finite group of isometries. M is homeomorphic to $Y \times \mathbb{R}$ if and only if it is homeomorphic to a product $Y \times \mathbb{R}$.

(iii) Let $G_0 \subseteq \pi_1(M)$ be a nilpotent subgroup of finite index. G_0 is soluble, so the derived series $G_i+1 = [G_i, G_i]$ reaches 1. Therefore there is a largest i such that $G_i \subseteq \pi_1(M)$ has finite index. Let \tilde{M} be the cover of M corresponding to $G_i \subseteq \pi_1(M)$. $\frac{\tilde{G}_i}{G_{i+1}}$ is an infinite Abelian group, so has non-zero rank.

Theorem 1.9. Let M be M_Σ with its orientation reversed and (φ_+, φ_-) a matching pair of G_2-structures. If φ_+ and φ_- define the same metric then M_Σ has a double cover isometric to a cylinder.

Proof. φ_+ is a torsion-free G_2-structure on M_Σ which defines the same metric as φ_-. The matching condition for φ_+ and φ_- implies that the parallel section is asymptotic to $\left[\frac{\partial}{\partial t} \right]$. In other words either M_Σ or a double cover of M_Σ has a parallel vector field asymptotic to $\frac{\partial}{\partial t}$ now this is impossible for a manifold with a single end, so M_Σ has a double cover which is isometric to a cylinder. Result 1.10. Let M_Σ be the moduli space of torsion-free EAC G_2-structures on M and N the moduli space of Calabi-Yau structures on their common cross-section X. We can define a subset $M_\Sigma \subseteq M_\Sigma \times M$ consisting of pairs which have matching images in N.

While we can apply our understanding of M_Σ and their relationship to N to show that M_Σ is a manifold, it is not an appropriate domain. The reason is that for a matching pair of points in the moduli spaces M_Σ, M there is some ambiguity in how to glue them.

Corollary 1.11. Let M be an asymptotically cylindrical manifold with non-negative Ricci curvature. Then the fundamental group $\pi_1(M)$ has a nilpotent subgroup of finite index. M is homotopy equivalent to a compact manifold with boundary so $\pi_1(M)$ is finitely generated. Volume comparison arguments show that the volume of balls in the universal cover of M grows polynomially and this can be used to deduce that $\pi_1(M)$ has polynomial growth.

2 Main Result

if $C = C_7 + C_{14}$ is a skew-symmetric tensor, then the evolution of the skew-symmetric tensor $P(C)$ under the ow equation:

$$\frac{\partial}{\partial t}(P(C))_{ij} = (P(\frac{\partial}{\partial t} C))_{ij} + 6\pi_7([h, C_{14}])_{ij} - 6\pi_4([h, C_7])_{ij} - 2\pi_7([X, C_{14}])_{ij} + 2\pi_4([X, C_7])_{ij}$$
Where π_7 and π_{14} denote the projections onto Ω^2_7 and Ω^2_{14} respectively.

Proof. we see that
\[\frac{\partial}{\partial t} \left(C_{ab} g^{ap} g^{bq} \psi_{pqi} \right) \]
equals
\[\left(\frac{\partial}{\partial t} C_{ab} \right) g^{ap} g^{bq} \psi_{pqi} + 2 C_{ab} \left(\frac{\partial}{\partial t} g^{ap} \right) g^{bq} \psi_{pqi} + C_{ab} g^{ap} g^{bq} \left(\frac{\partial}{\partial t} \psi_{pqi} \right) \]
\[= \left(P \left(\frac{\partial}{\partial t} C \right) \right)_{ij} - 4 C_{ab} h^{ap} g^{bq} \psi_{pqi} + C_{ab} h^{ap} g^{bq} \left(h_p^i \psi_{lqi} + h_q^i \psi_{pil} \right) \]
\[+ C_{ab} g^{ap} g^{bq} \left(h_p^i \psi_{pil} + h_q^i \psi_{pqi} - X_p \psi_{qij} + X_q \psi_{pil} - X_i \psi_{paj} + X_j \psi_{pqi} \right) \]
\[= \left(P \left(\frac{\partial}{\partial t} C \right) \right)_{ij} - 2 C_{ab} h^{ap} g^{bq} \psi_{pqi} + h_i^j \left(P(C) \right)_{ij} + \left(P(C) \right)_{ji} h_j^i \]
\[+ 2 \left(C_{ab} X^b g^{bq} \right) \psi_{pqi} - 6 (C_7)_i X_i + 6 (C_7)_i X_j \quad (1) \]

where we have used the skew-symmetry of C and of φ and relabeled indices to combine terms. The second term above can be written as
\[-2 h_{at} g^{im} C_{mb} g^{ap} g^{bq} \psi_{pqi} = - (h_{at} g^{im} C_{mb} + C_{at} g^{im} h_{mb}) g^{ap} g^{bq} \psi_{pqi} \]
\[= - \{ h, c \}_{ab} g^{ap} g^{bq} \psi_{pqi} = - P \{ h, c \}_{ij} = 4 (\pi_7 \{ h, c \})_{ij} - 2 (\pi_{14} \{ h, c \})_{ij} \]
\[= 4 (\pi_7 \{ h, c_7 \})_{ij} + 2 (\pi_7 \{ h, c_{14} \})_{ij} - 2 (\pi_{14} \{ h, c_7 \})_{ij} - 2 (\pi_{14} \{ h, c_{14} \})_{ij} \]

Meanwhile the third and fourth terms of (1) become Combining these
\[\{ h, P(C) \}_{ij} = \{ h, -4 C_7 + 2 c_{14} \}_{ij} \]
\[= -4 (\pi_7 \{ h, c_7 \})_{ij} + 2 (\pi_7 \{ h, c_{14} \})_{ij} - 4 (\pi_{14} \{ h, c_7 \})_{ij} + 2 (\pi_{14} \{ h, c_{14} \})_{ij} \]

expressions, after some cancellation we see that
\[\frac{\partial}{\partial t} \left(C_{ab} g^{ap} g^{bq} \psi_{pqi} \right) = \left(P \left(\frac{\partial}{\partial t} C \right) \right)_{ij} + 6 \pi_7 \{ h, c_{14} \}_{ij} - 6 \pi_{14} \{ h, c_7 \}_{ij} \]
\[+ 2 \left(C_{ab} X^b g^{bq} \right) \psi_{pqi} - 6 (C_7)_i X_i + 6 (C_7)_i X_j \quad (2) \]

Consider now the third to last term above:
\[2 \left(C_i (X_i) + C_i (X_i) \right) = 2 \left(- \frac{1}{2} [C_i, X_i] - \frac{3}{2} (C_7)_i X_i + \frac{3}{2} (C_7)_i X_i \right) \]
\[= -[C_i, X_i] + 2 \left[C_{14}, X_i \right] - 3 (C_7)_i X_i + 3 (C_7)_i X_i \]
Hence the final three terms of (2) are:
\[= -[C_i, X_i] + 2 \left[C_{14}, X_i \right] + 3 (C_7)_i X_i - 3 (C_7)_i X_i \]
\[= -[C_i, X_i] + 2 \left[C_{14}, X_i \right] - 3 \left(-\frac{1}{3} [C_i, X_i] + \frac{2}{3} (C_7 \times X)_{ij} \right) \]
\[= -2 [C_i, X_i] + 2 \left[C_{14}, X_i \right] + 2 (C_7 \times X)_{ij} \quad (3) \]

now by using (1) and (2) and (3) the result is prove.

REFERENCES