INTRODUCTION

Ammonia or azane is a compound of nitrogen and hydrogen with the formula NH₃. It is a colorless gas with a characteristic pungent smell that irritates the eyes and respiratory system and can reduce resistance to infection in poultry. At high-enough concentrations (above 10 ppm), ammonia will reduce feed efficiency and growth while increasing mortality and carcass condemnations. The result is economic loss to the grower and integrator.

Environmental ammonia inside broiler houses arises from the microbial breakdown of uric acid of the excrements (Carlile, 1984). The efficiency of this conversion is affected by different factors as temperature, PH and moisture of the litter, properties of bedding material or ventilation flow and management techniques (Elliott and Collins, 1982; Patterson and Adrizal, 2005). Increased moisture levels promote proliferation of microorganisms in the litter, increasing the production and volatilization of ammonia (Groot Koerkamp et al., 1999; Al Homidan et al., 2003; Oviedo, 2005).

Due to the volatile and water-soluble nature of ammonia, it can be dissolved into the mucous membranes of the respiratory epithelium and eyes of animals, being responsible for the onset of sneezing, dyspnoea, inflammation of the air sacs, respiratory diseases and keratoconjunctivitis (Carlile, 1984). Further investigations suggested that lung diseases, as well as inhalation of airborne irritants such as ammonia, result in reduced pulmonary gas exchange causing also an exacerbation of ascites (Charles and Payne, 1966). Indeed, Scheele et al., (1991) reported that broilers with respiratory infections are more susceptible to ascites and have decreased capacities for O₂ consumption when compared with their disease-free counterparts. Some studies even reported higher mortality and lower feed consumption (Carlile, 1984; Miles, 2004), lower vaccine response (Caveny, 1981) or increased disease susceptibility (Beker et al, 2004). Therefore, high levels of ammonia in farm inner environment may have a negative effect on animal health, reducing also, the performance of broilers (Kristensen and Wathes, 2000; Miles et al., 2002, 2004; Beker et al, 2004).

Broiler and turkey litter typically consists of wood shavings, rice hulls, or peanut hulls. Uric acid and organic nitrogen (N) in the bird excreta and spilled feed are converted to ammonium (NH₄⁺) by the microbes in the litter. Ammonium, a plant-available N form, can bind to litter and also dissolve in water. Depending on the moisture content, temperature, and acidity of
the litter, a portion of the ammonium will be converted into ammonia \((\text{NH}_3)\). Ammonia production is favored by high temperature and high pH (i.e., alkaline conditions).

Several investigators (McCrary and Hobbs, 2001; Blake and Hess, 2001; Sanjay Shah et al., 2006) studied the effect of chemicals on poultry litter and litter treatments to reduce ammonia and/or bacterial populations. Selecting the best litter treatment is dependent on matching the characteristics of the product with treatment goals. The acidifying litter treatments currently dominate the market due to their efficacy in reducing ammonia and lowering litter pH which aids in suppressing microbial populations. Maintaining desirable litter moisture and reducing litter pH are two means frequently used to reduce ammonia volatilization (and bacterial populations) in used litter. Chemical, microbial and enzymatic litter treatments are being used to reduce ammonia and/or bacterial populations (Bud, 2006).

Objective

Test the validity of some new compounds as amendments in reducing the emission of ammonia gas from poultry litter and houses.

MATERIALS AND METHODS

Birds and Diets

These experiments were conducted from January to March of 2011. A total 1200 of commercial one day-old Hubbard chicks of both sexes were used, at the poultry facilities located in broiler farm. Four identical experimental rooms (Room 1, 2, 3 and 4; 4.5 x 2.5 m.) were used for this purpose.

The concrete floor of the rooms was covered with a 10 cm depth straw shavings litter.

Three of the rooms were subjected to treatment (1, 2 and 3) and the other one (4) was used as control (C) room. The birds were reared during a 45-day cycle.

Housing conditions simulated those found in most commercial farms (opened system). Each room was equipped with 4 feeders and 15 drinkers (distributed in 2 and 3 lines, respectively). Temperature and relative humidity (RH) were maintained according to breeder’s recommendations and lighting regime varied gradually from a 23:1 scheme (23 hours of light and 1 hour of darkness) during the first three days to a 24 scheme. Feed and water were provided *ad libitum* throughout the experiment. Two different types of feed were used: starter feed, used from day 0 to day 21 and grower feed, from day 21 to day 45.

The chicks were brooded between 31 and 32°C on wk 1, and the temperature was lowered gradually each week until 24 to 27°C was achieved. The composition of the basal diets is presented in Table 1. Routine management, vaccinations and medications were administered according to methods of Oluyemi and Roberts, (1979).

<table>
<thead>
<tr>
<th>Table 1. Composition of basal diets (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients</td>
</tr>
<tr>
<td>Yellow corn</td>
</tr>
<tr>
<td>Corn gluten</td>
</tr>
<tr>
<td>Soybean meal</td>
</tr>
<tr>
<td>Soy oil</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
</tr>
<tr>
<td>Lime stone</td>
</tr>
<tr>
<td>Common salt</td>
</tr>
<tr>
<td>DL-Methionine</td>
</tr>
<tr>
<td>L-lysine</td>
</tr>
<tr>
<td>Broiler premix*</td>
</tr>
</tbody>
</table>

Nutrient Profile: ME (kcal/kg): 3184.21; 3187.81

<table>
<thead>
<tr>
<th>Item</th>
<th>Starter (0–21 d)</th>
<th>Finisher (22–45 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein%</td>
<td>22.82</td>
<td>20.00</td>
</tr>
<tr>
<td>Crude fat%</td>
<td>7.3</td>
<td>6.1</td>
</tr>
<tr>
<td>Crude fiber%</td>
<td>4.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Total ash%</td>
<td>6.1</td>
<td>6.2</td>
</tr>
<tr>
<td>Calcium%</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Non-phytate phosphorus%</td>
<td>0.46</td>
<td>0.48</td>
</tr>
</tbody>
</table>

* Supplied per kilogram of diet: vitamin A, 10000 IU; vitamin D₂, 9780 IU; vitamin E, 121 IU; B₁₂, 20 μg; riboflavin, 4.4 mg; calcium pantothenate, 40 mg; nicacin, 22 mg; choline, 840 mg; biotin, 30 μg; thiamin, 4 mg; zinc sulfate, 60 mg; manganese oxide, 60.
Experimental

The experiment was conducted to test the validity of novel amendments to reduce the presence of these ammonia producing microbes and reduce ammonia emissions from poultry houses. The experiment was consisted of 4 treatments x 2 replication, each 150 broiler chicks of both sexes per pen.

Experimental treatments: Experimental treatments were:
Treatment A: 0.2% Sodium perborate, NaH₂B₄O₆
Treatment B: 0.2% TiO₂ (nanotitannium oxide:15 nm diamter) Photocatalyst.
Treatment D: 0.02% TiO₂ (nanotitannium oxide: 15 nm diamter) Photocatalyst + 0.25 % Paraformaldehyde granules.
Treatment C: Nontreated poultry litter.

Samples of the litter were taken weekly from each room, according to the protocol proposed by Tasistro et al., (2004) and were analyzed for:
1. Ammonia gas emission (mg\ m⁻³) Ammonia gas emission (mg\ m⁻³). Ammonia levels were measured by Bellows and gas Detection Tubes.
2. Total bacterial count (cfu gm⁻¹) (A.P.H.A.,1984)
3. Total fungal count (cfu gm⁻¹) (A.P.H.A.,1984)

PH of poultry litter (Brake et al.,1992)

RESULTS AND DISCUSSION

Microbial mineralization

Microbial mineralization of urea and uric acid in poultry litter results in the production of ammonia, which can lead to decreased poultry performance, malodorous emissions, and loss of poultry litter value as a fertilizer (Rothrock et al., 2008).

The results in Table 2 revealed that, nontreated poultry litter had relatively high total bacterial count (10⁶ cfu g⁻¹ litters) and 10⁶ cfu g⁻¹ litter of fungal populations. Sodium perborate treatment reduced the total bacterial population by 2 log₁₀ within 2 wk and increase fungal population by 2 log₁₀ within 3-4 wk than in non-treated litter (10⁶ c f u g⁻¹ litter). Sodium perborate is useful because it is a stable, nontoxic source of peroxide anions. When dissolved in water it forms some hydrogen peroxide, but also perborate anion [B (OOH) (OH)₂] which is activated for nucleophilic oxidation.

(TiO₂) Photocatalyst of the poultry litter resulted in > 2 log₁₀ decreases in total fungal concentrations, and bacterial decreasing by > 3 1 log₁₀ within the first 2 to 3 wk of the litter treatment. TiO₂ Photocatalyst resulted in delayed mineralization events for both uric acid and urea respectively. Once bacterial cell concentrations decreased the activity of these bacterial populations will be decreased and ammonia volatilization will be reduced. Photocatalyst can effectively decompose harmful pollutants such as formaldehyde, benzene, toluene, dimethylbenzene, ammonia and TVOC, with wide-spectrum sterilizing effect, capable of killing and inhibiting bacteria, fungi and viruses.

Table 2. Effect of the new amendments on ammonia emissions, microbes producing ammonia and PH of treated poultry litters

<table>
<thead>
<tr>
<th>Agents</th>
<th>Parameters</th>
<th>PH</th>
<th>Log₁₀</th>
<th>NH₃</th>
<th>TiO₂</th>
<th>+ Paraformaldehyde granules</th>
<th>TiO₂ Photocatalyst</th>
<th>Untreated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium perborate</td>
<td>Days</td>
<td>PH</td>
<td>Log₁₀</td>
<td>NH₃</td>
<td>PH</td>
<td>Log₁₀</td>
<td>NH₃</td>
<td>PH</td>
</tr>
<tr>
<td>Treatment A</td>
<td>7</td>
<td>6.5</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>5.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>5.8</td>
<td>0</td>
<td>2</td>
<td>15</td>
<td>5.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>6.2</td>
<td>2²</td>
<td>2</td>
<td>18</td>
<td>4.5</td>
<td>2²</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6</td>
<td>2²</td>
<td>3</td>
<td>15</td>
<td>5.5</td>
<td>2²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6</td>
<td>2²</td>
<td>3</td>
<td>20</td>
<td>4.5</td>
<td>2²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>5.8</td>
<td>2²</td>
<td>3</td>
<td>25</td>
<td>5</td>
<td>2²</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>5</td>
<td>2²</td>
<td>3</td>
<td>25</td>
<td>6.5</td>
<td>2²</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>6</td>
<td>2²</td>
<td>3</td>
<td>20</td>
<td>6.5</td>
<td>2²</td>
<td>2</td>
</tr>
</tbody>
</table>

1: Treatment A: 0.2% Sodium perborate, Na₂H₄B₄O₆; Treatment B: 0.02% TiO₂ (nanotitannium oxide:15 nm diamter) Photocatalyst + 0.25 % Paraformaldehyde granules; Treatment D: 0.2% TiO₂ (nanotitannium oxide:15 nm diamter) Photocatalyst; Treatment C: Nontreated poultry litter. FC: Total fungal count (cfu gm⁻¹); TC: Total bacterial count (cfu gm⁻¹); NH₃: Ammonia gas emission (mg\ m⁻³)

PH of litter

The decrease in pH (> 6.5) produced by Sodium perborate, TiO₂ Photocatalyst and TiO₂+ Paraformaldehyde granules treatment are believed to inhibit bacterial populations.

The poultry build up litter has an average pH of 8.0 – 9.0, this is considered a high pH or alkaline. The pH can influence the ammonia volatilization. Ammonia release from litter is reduced when litter pH is below 7; emission exceeds when pH is 8 and above. At litter pH lower than 4.6, the economically devastating bacteria like *E.coli, Salmonella, Clostridium,* and
Campylobacter do not grow. Respiratory tract is the first to be affected. Birds become prone to variety of respiratory infections such as CRD coupled with E coli etc. Ammonia gas in poultry houses is also regarded as one of the contributing causes of Ascitis in fast growing broilers. So right solution is sanitization of litter with litter conditioner which drastically lowers pH of the litter to become acidic and environment friendly too.

These amendments (Sodium perborate, TiO₂ Photocatalyst and TiO₂+ Paraformaldehyde granules) create acidic conditions (pH less than 7) in the litter, resulting in more of the ammoniacal-N being retained as ammonium rather than ammonia. The acidity also creates unfavorable conditions for the bacteria and enzymes that contribute to ammonia formation, resulting in reduced ammonia production. These amendments (Sodium perborate, TiO₂ Photocatalyst and TiO₂+ Paraformaldehyde granules) have wide-spectrum of sterilizing or antimicrobial effect that leads to a state of equilibrium among microbial populations of mineralization as well as the ability to decompose ammonia in poultry litter.

Acidifying additives that reduce the pH of the litter can greatly reduce ammonia volatilization. Potential treatments include acids, base precipitating salts, and labile carbon (McCrory and Hobbs, 2001). A number of acids can be used to decrease manure pH, but problems that deter their use include high cost, corrosiveness, and hazards to animal and human health. Many different types of acidifiers, such as alum, sodium bisulfate, ferrous sulfate, and phosphoric acid, were found to be effective in controlled studies. However, some acidifiers are not recommended for use in poultry houses for reasons such as bird toxicity (ferrous sulfate) or increased phosphorus (P) levels in the already P-rich litter (phosphoric acid).

Ammonia emission

The concentrations of ammonia, as shown in Table 2 and Figure 1, in the C room were 20, 35, 40, 45, 60, 65, 88 and 120 mg/m³ at 7,14,20,25,30,35,40 and 45 days of the cycle period, respectively. This distinctive feature of ammonia concentrations pattern was that it started to increase sharply at the end of the cycle. This could be because of an increment in ammonia production as litter pH approaches more than 7.0 (Reece et al., 1980; Elliot and Collins, 1982; Carr et al., 1990). Besides, as environmental RH rises, ammonia levels may also increase (Weaver and Meijerhof, 1999).

![Figure 1. Effect of the new amendments on ammonia emissions of treated poultry litters](image-url)
The concentrations of ammonia gas in the three trials were below the threshold which may affect human wellbeing and welfare and productive parameters in broilers, settled at 17 - 25 mg/m3 (ppm) of ammonia by Al-Homidan et al. (2003), Carlile, (1984) and the CIGR, (1992).

Deleterious effects of ammonia depend on its concentration to which the birds get a prolonged exposure. Even lowest concentration of 10 - 20 ppm hampers the performance of bird.

Our results confirmed that, acidification of the poultry litter resulted in increase of total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk in the litter. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter (Rothrock et al., 2010).

Acidifying additives that reduce the pH of the litter can greatly reduce ammonia volatilization. Potential treatments include acids, base precipitating salts, and labile carbon (McCrary and Hobbs, 2001). A number of acids can be used to decrease manure pH, but problems that deter their use include high cost, corrosiveness, and hazards to animal and human health. Many different types of acidifiers, such as alum, sodium bisulfate, ferrous sulfate, and phosphoric acid, were found to be effective in controlled studies. However, some acidifiers are not recommended for use in poultry houses for reasons such as bird toxicity (ferrous sulfate) or increased phosphorus (P) levels in the already P-rich litter (phosphoric acid).

CONCLUSIONS

The concentrations of ammonia gas in the three trials were below the threshold which may affect welfare and productive parameters in broilers. In These amendments (Sodium perborate, TiO$_2$ Photocatalyst and TiO$_2$+ Paraformaldehyde granules) have wide-spectrum of sterilizing or antimicrobial effect that leads to a state of equilibrium among microbial populations of mineralization as well as the ability to decompose ammonia in poultry litter.

REFERENCES

Oluymeni JA and Roberts FA. 1979. Poultry production in the warm wet climate. 2nd Edn.

